Castelli, M., Bhattacharya, K., Abboud, E., Serapian, S. A., Picard, D.*, and Colombo, G.* (2023). Phosphorylation of the Hsp90 co-chaperone Hop changes its conformational dynamics and biological function. J. Mol. Biol. 435, 167931. [DOI]
* Corresponding authors

Hany, D., Zoetemelk, M., Bhattacharya, K., Nowak-Sliwinska, P., and Picard, D. (2023). Network-informed discovery of multidrug combinations for ERα+/HER2-/PI3Kα-mutant breast cancer. Cell. Mol. Life Sci. 80, 80 [DOI]; initially deposited in bioRxiv in 2022.

Hany, D., Vafeiadou, V., and Picard, D. (2023). CRISPR/Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. Sci. Adv. 9, eadd3685 [Open Access]; initially deposited in bioRxiv in 2022.

Ahmadian Elmi, M., Motamed, N., and Picard, D. (2023). Proteomic analyses of the G protein-coupled estrogen receptor GPER1 reveal constitutive links to endoplasmic reticulum, glycosylation, trafficking, and calcium signaling. Cells 12, 2571. [DOI]

Bonnet, K. A., Hulo, N., Mourad, R., Ewing, A., Croce, O., Naville, M., Vassetzky, N., Gilson, E., Picard, D., and Fourel, G. (2023). ProA and ProB repeat sequences shape genome organization, and enhancers open domains. bioRxiv 2023.10.27.564043. [DOI]

Maiti, S., Bhattacharya, K., Wider, D., Hany, D., Panasenko, O., Bernasconi, L., Hulo, N., and Picard, D. (2023). Hsf1 and the molecular chaperone Hsp90 support a “rewiring stress response” leading to an adaptive cell size increase in chronic stress. eLife 12, RP88658 [Open Access]; initially deposited in bioRxiv in 2023.


Vafeiadou, V., Hany, D.*, and Picard, D.* (2022). Hyperactivation of MAPK induces tamoxifen resistance in SPRED2-deficient ERα-positive breast cancer. Cancers 14, 954. [DOI] (* these authors contributed equally)

Mohammadi Ghahhari, N., Sznurkowska, M. K., Hulo, N., Bernasconi, L., Aceto, N., and Picard, D. (2022). Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis. Nat. Commun. 13, 2104 [DOI]

Bhattacharya, S.*, Bhattacharya, K.*, Xavier, V., Ziarati, A., Picard, D., and Bürgi, T. (2022). The atomically precise gold/captopril nanocluster Au25(Capt)18 gains anticancer activity by inhibiting mitochondrial oxidative phosphorylation. ACS Appl. Mater. Interfaces 14, 29521-29536 [DOI] (* these authors contributed equally to this publication)

Joshi, A., Ito, T., Picard, D., and Neckers, L. (2022). The mitochondrial HSP90 paralog TRAP1: Structural dynamics, interactome, role in metabolic regulation, and inhibitors. Biomolecules 12, 880. [DOI]

Maiti, S., and Picard, D. (2022). Cytosolic Hsp90 isoform-specific functions and clinical significance. Biomolecules 12, 1166. [DOI]

D’Annessa, I., Colombo, G., and Picard, D., eds. (2022). Fine-tuned regulation of Hsp90: the new frontier against cancer and neurodegeneration. A “Research Topics” of Front. Mol. Biosci. with 4 articles. [Open Access]

Bhattacharya, K., Maiti, S., Zahoran, S., Weidenauer, L., Hany, D., Wider, D., Bernasconi, L., Quadroni, M., Collart, M., and Picard, D. (2022). Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life. Nat. Commun. 13, 6271 [Open Access]; initially deposited in bioRxiv in 2022.


Abboud, E., Bernasconi, L., and Picard, D. (2021). The H90-10 single-chain antibody recognizes Hsp90β by immunoprecipitation and Western blotting. Antibody Rep. 4, e285. [Open Access]

Bhattacharya, K., and Picard, D. (2021). The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell. Mol. Life Sci. 78, 7257-7273. [DOI]

Shonhai, A., Picard, D., and Blatch, G. L. (2021). Heat shock proteins of malaria. Adv. Exp. Med. Biol. 1340. [DOI]


Joshi, A., Dai, L., Lee, J., Mohammadi Ghahhari, N., Segala, G., Beebe, K., Jenkins, L. M., Lyons, G. C., Bernasconi, L., Tsai, F. T. F., Agard, D. A., Neckers, L., and Picard, D. (2020). The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis. BMC Biol. 18, 10 [Open Access]; initially deposited in bioRxiv in 2019.

Oshima, N., Ishida, R., Kishimoto, S., Beebe, K., Brender, J. R., Yamamoto, K., Urban, D., Rai, G., Johnson, M. S., Benavides, G., Squadrito, G. L., Crooks, D., Jackson, J., Joshi, A., Mott, B. T., Shrimp, J. H., Moses, M. A., Lee, M. J., Yuno, A., Lee, T. D., Hu, X., Anderson, T., Kusewitt, D., Hathaway, H. H., Jadhav, A., Picard, D., Trepel, J. B., Mitchell, J. B., Stott, G. M., Moore, W., Simeonov, A., Sklar, L. A., Norenberg, J. P., Linehan, W. M., Maloney, D. J., Dang, C. V., Waterson, A. G., Hall, M., Darley-Usmar, V. M., Krishna, M. C., and Neckers, L. M. (2020). Dynamic imaging of LDH inhibition in tumors reveals rapid in vivo metabolic rewiring and vulnerability to combination therapy. Cell Rep. 30, 1798-1810. [Open Access]

Pezzatti, J., Boccard, J., Sanchez, S. C., Gagnebin, Y., Joshi, A., Picard, D., González-Ruiz, V., and Rudaz, S. (2020). Implementation of liquid chromatography-high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: a tutorial. Anal. Chim. Acta 1105, 28-44. [DOI]

Mazaira, G. I., Echeverría, P. C., and Galigniana, M. D. (2020). Nucleocytoplasmic shuttling of the glucocorticoid receptor is influenced by tetratricopeptide repeat-containing proteins. J. Cell Sci. 133, jcs.238873. [DOI]

Gjorgjieva, M., Sobolewski, C., Ay, A.-S., Abegg, D., Sousa, M. C. d., Portius, D., Berthou, F., Fournier, M., Maeder, C., Rantakari, P., Zhang, F.-P., Poutanen, M., Picard, D., Montet, X., Nef, S., Adibekian, A., and Foti, M. (2020). Genetic ablation of miR-22 fosters diet-induced obesity and NAFLD development. J. Pers. Med. 10, 170. [Open Access]

Bhattacharya, K., Weidenauer, L., Morán Luengo, T., Pieters, E. C., Echeverría, P. C., Bernasconi, L., Wider, D., Sadian, Y., Koopman, M. B., Villemin, M., Bauer, C., Rüdiger, S. G. D., Quadroni, M., and Picard, D. (2020). The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nat. Commun. 11, 5975 [Open Access]; initially deposited in bioRxiv in 2019.


Keszei, Z., and Picard, D. (2019). AI179 single-chain antibody recognizes the Myc tag by Western blotting. Antibody Rep. 2, e27. [Open access]

Keszei, Z., and Picard, D. (2019). AF291 and AE391 single-chain antibodies recognize the HA tag by Western blotting. Antibody Rep. 2, e25. [Open access]

Segala, G., Bennesch, M. A., Mohammadi Ghahhari, N., Pandey, D. P., Echeverria, P. C., Karch, F., Maeda, R. K., and Picard, D. (2019). Vps11 and Vps18 of Vps-C membrane traffic complexes both are E3 ubiquitin ligases and fine-tune signal transduction. Nat. Commun. 10, 1833. [Open access]

Pezzatti, J., González-Ruiz, V., Sanchez, C., Gagnebin, Y., Joshi, A., Guillarme, D., Schappler, J., Picard, D., Boccard, J., and Rudaz, S. (2019). A scoring approach for multi-platform acquisition in metabolomics. J. Chromatogr. A 1592, 47-54. [DOI]

Echeverria, P. C., Bhattacharya, K., Joshi, A., Wang, T., and Picard, D. (2019). The sensitivity to Hsp90 inhibitors of both normal and oncogenically transformed cells is determined by the equilibrium between cellular quiescence and activity. PLoS ONE 14, e0208287 [DOI]; initially deposited in BioRxiv in 2018.


Berto, M., Jean, V., Zwart, W., and Picard, D. (2018). ERα activity depends on interaction and target site corecruitment with phosphorylated CREB1. Life Science Alliance 1, e201800055. [Open access]

Bhattacharya, K., Bernasconi, L., and Picard, D. (2018). Luminescence resonance energy transfer between genetically encoded donor and acceptor for protein-protein interaction studies in the molecular chaperone HSP70/HSP90 complexes. Sci. Rep. 8, 2801. [DOI]

Neckers, L., Blagg, B., Haystead, T., Trepel, J., Whitesell, L., and Picard, D. (2018). Methods to validate Hsp90 inhibitor specificity, to identify off-target effects and to rethink approaches for further clinical development. Cell Stress Chaperones 23, 467-482. [DOI]


Abla, N., Bashyam, S., Charman, S. A., Greco, B., Hewitt, P., Jiménez-Díaz, M. B., Katneni, K., Kubas, H., Picard, D., Sambandan, Y., Sanz, L. X., Smith, D. A., Wang, T., Willis, P. A., Wittlin, S., and Spangenberg, T. (2017). Long-lasting and fast-acting in vivo efficacious antiplasmodial azepanylcarbazole amino alcohol. ACS Med. Chem. Lett. 8, 1304-1308. [DOI]

Wider, D., and Picard, D. (2017). Secreted dual reporter assay with Gaussia luciferase and the red fluorescent protein mCherry. PLoS ONE 12, e0189403. [DOI]

Segala, G., David, M., de Medina, P., Poirot, M. C., Serhan, N., Vergez, F., Mougel, A., Saland, E., Carayon, K., Leignadier, J., Caron, N., Voisin, M., Cherier, J., Ligat, L., Lopez, F., Noguer, E., Rives, A., Payré, B., Saati, T. a., Lamaziere, A., Despres, G., Lobaccaro, J.-M., Baron, S., Demur, C., de Toni, F., Larrue, C., Boutzen, H., Thomas, F., Sarry, J.-E., Tosolini, M., Picard, D., Record, M., Récher, C., Poirot, M., and Silvente-Poirot, S. (2017). Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nat. Commun. 8, 1903. [Open access]

Fitzgerald, J. C., Zimprich, A., Carvajal Berrio, D. A., Schindler, K. M., Maurer, B., Schulte, C., Bus, C., Hauser, A.-K., Kübler, M., Lewin, R., Bobbili, D. R., Schwarz, L. M., Vartholomaiou, E., Brockmann, K., Wüst, R., Madlung, J., Nordheim, A., Riess, O., Martins, L. M., Glaab, E., May, P., Schenke-Layland, K., Picard, D., Sharma, M., Gasser, T., and Krüger, R. (2017). Metformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson’s disease. Brain 140, 2444-2459. [DOI]

Madon-Simon, M., Grad, I., Bayo, P., Pérez, P., and Picard, D. (2017). Defective glucocorticoid receptor signaling and keratinocyte-autonomous defects contribute to skin phenotype of mouse embryos lacking the Hsp90 co-chaperone p23. PLoS ONE 12, e0180035 [DOI]

Pupo, M., Bodmer, A., Berto, M., Maggiolini, M., Dietrich, P.-Y., and Picard, D. (2017). A genetic polymorphism repurposes the G-protein coupled and membrane- associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells. Oncotarget 8, 46728-46744 [Link]. (featured cover paper of Oncotarget volume 8, issue 29)

Vartholomaiou, E.*, Madon-Simon, M.*, Hagmann, S., Mühlebach, G., Wurst, W., Floss, T., and Picard, D. (2017). Cytosolic Hsp90α and its mitochondrial isoform Trap1 are differentially required in a breast cancer model. Oncotarget 8, 17428-17442. [online] (featured cover paper of Oncotarget volume 8, issue 11; * these authors contributed equally)

Segala, G., and Picard, D. (2017). H2B monoubiquitination: t’ub or not t’ub for inducible enhancers. Transcription 8, 126-132. [DOI]


Segala, G., Bennesch, M. A., Pandey, D. P., Hulo, N., and Picard, D. (2016). Monoubiquitination of histone H2B blocks eviction of histone variant H2A.Z from inducible enhancers. Mol. Cell 64, 334-346. [Link]

Recouvreux, M. S., Grasso, E. N., Echeverria, P. C., Rocha-Viegas, L., Castilla, L. H., Schere-Levy, C., Tocci, J. M., Kordon, E. C., and Rubinstein, N. (2016). RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes. Oncotarget 7, 6552-6565. [DOI]

Wang, T., Mäser, P., and Picard, D. (2016). Inhibition of Plasmodium falciparum Hsp90 contributes to the antimalarial activities of aminoalcohol-carbazoles. J. Med. Chem. 59, 6344-6352. [DOI]

Bennesch, M. A., Segala, G., Wider, D., and Picard, D. (2016). LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Res. 44, 8655-8670. [DOI]

De Marco, P., Lappano, R., De Francesco, E. M., Cirillo, F., Pupo, M., Avino, S., Vivacqua, A., Abonante, S., Picard, D., and Maggiolini, M. (2016). GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response. Sci. Rep. 6, 24354. [DOI]

Echeverría, P. C., Briand, P.-A., and Picard, D. (2016). A remodeled Hsp90 molecular chaperone ensemble with the novel co-chaperone Aarsd1 is required for muscle differentiation. Mol. Cell. Biol. 36, 1310-1321. [Pubmed]

Vartholomaiou, E., Echeverría, P. C., and Picard, D. (2016). Unusual suspects in the twilight zone between the Hsp90 interactome and carcinogenesis. In: Advances in Cancer Research, G. D. Isaacs and L. J. Whitesell, eds., Elsevier, Vol. 129, pp. 1-30. [DOI]


Degese, M. S., Tanos, T., Naipauer, J., Gingerich, T., Chiappe, D., Echeverria, P., LaMarre, J., Gutkind, J. S., and Coso, O. A. (2015). An interplay between the p38 MAPK pathway and AUBPs regulates c-fos mRNA stability during mitogenic stimulation. Biochem. J. 467, 77-90. [DOI]

Bennesch, M., and Picard, D. (2015). Tipping the balance: ligand-independent activation of steroid receptors. Mol. Endocrinol. 29, 349-363. [Pubmed]


Echeverria, P. C., and Picard, D. (2014). A global view of the proteome perturbations by Hsp90 inhibitors. In: The molecular chaperones interaction networks in protein folding and degradation, W. A. Houry, ed., Springer, pp. 133-150. [DOI]

Rasola, A., Neckers, L., and Picard, D. (2014). Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells. Trends Cell Biol. 24, 455-463. [Pubmed]

Angel, S. O., Figueras, M. J., Alomar, M. L., Echeverria, P. C., and Deng, B. (2014). Toxoplasma gondii Hsp90: potential roles in essential cellular processes of the parasite. Parasitology 141, 1138-1147. [Pubmed]

Wang, T., Bisson, W. H., Mäser, P., Scapozza, L., and Picard, D. (2014). Differences in conformational dynamics between Plasmodium falciparum and human Hsp90 orthologs enable the structure-based discovery of pathogen-selective inhibitors. J. Med. Chem. 57, 2524−2535. [DOI]

Wang, T., Echeverría, P. C., and Picard, D. (2014). Overview of molecular chaperones in health and disease. In Inhibitors of molecular chaperones as therapeutic agents, T. D. Machajewski and Z. Gao, ed., Drug Discovery Series No. 37 (Cambridge: RSC Publishing), Chapter 1, pp. 1-36. [in google books]

Figueras, M. J., Echeverría, P. C., and Angel, S. O. (2014). Protozoan HSP90-heterocomplex: molecular interaction network and biological significance. Curr. Prot. Pept. Sci. 15, 245-255. [Pubmed]


Fierro-Monti, I., Echeverria, P., Racle, J., Hernandez, C., Picard, D., and Quadroni, M. (2013). Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy. PLoS One 8, e80425. [link]

Hasan, U. A., Zannetti, C., Parroche, P., Goutagny, N., Malfroy, M., Roblot, G., Carreira, C., Hussain, I., Müller, M., Taylor-Papadimitriou, J., Picard, D., Sylla, B. S., Trinchieri, G., Medzhitov, R., and Tommasino, M. (2013). The Human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. J. Exp. Med. 210, 1369-1387. [Pubmed]

Tanos, T., Sflomos, G., Echeverría, P. C., Ayyanan, A., Gutierrez, M., Delaloye, J.-F., Raffoul, W., Fiche, M., Dougall, W., Schneider, P., Yalcin-Ozuysal, O., and Brisken, C. (2013). Progesterone/RANKL is a major regulatory axis in the human breast. Sci. Transl. Med. 5, 182ra155. [link]

Yoshida, S.*, Tsutsumi, S.*, Mühlebach, G.*, Sourbier, C., Lee, M.-J., Lee, S., Vartholomaiou, E., Tatakoro, M., Beebe, K., Miyajima, N., Mohney, R., Chen, Y., Hasumi, H., Xu, W., Fukushima, H., Nakamura, K., Koga, K., Kihara, K., Trepel, J., Picard, D., and Neckers, L. (2013). The molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 110, E1604-1612. [Pubmed(* these authors contributed equally)


Tanos, T., Rojo, L. J., Echeverria, P., and Brisken, C. (2012). ER and PR signaling nodes during mammary gland development. Breast Cancer Res. 14, 210. [Pubmed

Picard, D. (2012).  Preface to Hsp90. Biochim. Biophys. Acta 1823, 605-606. (Special issue on Hsp90) [DOI]


Echeverría, P. C., Bernthaler, A., Dupuis, P., Mayer, B., and Picard, D (2011). An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE 6, e26044 [Open Access]

Ge, X., Rameix-Welti, M.-A., Gault, E., Chase, G., dos Santos Afonso, E., Picard, D., Schwemmle, M., and Naffakh, N. (2011). Influenza virus infection induces the nuclear relocalization of the Hsp90 co-chaperone p23 and inhibits the glucocorticoid receptor response. PLoS ONE 6, e23368. [Open Access]

Echeverria, P. C., Forafonov, F., Pandey, D. P.,  Mühlebach, G., and Picard, D. (2011). Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation. BioData Mining 4, 15. [Open Access]

Lappano, R., Recchia, A. G., De Francesco, E. M., Angelone, T., Cerra, M. C., Picard, D., and Maggiolini, M. (2011). The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. PLoS ONE 6, e16631.


Echeverria, P. C., Figueras, M. J., Vogler, M., Kriehuber, T., de Miguel, N., Deng, B., Dalmasso, M. C., Matthews, D. E., Matrajt, M., Haslbeck, M., Buchner, J., and Angel, S. O. (2010). The Hsp90 co-chaperone p23 of Toxoplasma gondii: Identification, functional analysis and dynamic interactome determination. Mol. Biochem. Parasitol. 172, 129-140. [Pubmed]

Grad, I., Cederroth, C. R., Walicki, J., Grey, C., Barluenga, S., Winssinger, N., De Massy, B., Nef, S., and Picard, D. (2010). The molecular chaperone Hsp90α is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS ONE 5, e15770. [PLoS One]

Pandey, D. P., and Picard, D. (2010). Multidirectional interplay between nuclear receptors and microRNAs. Curr. Opin. Pharmacol. 10, 637-642. [Pubmed]

Carascossa, S.*, Dudek, P.*, Cenni, B., Briand, P.-A., and Picard, D. (2010). CARM1 mediates the ligand-independent and tamoxifen-resistant activation of the estrogen receptor α by cAMP. Genes Dev. 24, 708-719. [Genes Dev]

Echeverría, P. C., and Picard, D. (2010). Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta 1803, 641-649. [Pubmed]

Maggiolini, M., and Picard, D. (2010). The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J. Endocrinol. 204, 105-114. [Pubmed]


Pandey, D.P., and Picard, D. (2009). miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor α mRNA. Mol. Cell. Biol. 29, 3783-3790. [MCB]

Wider, D., Péli-Gulli, M.-P., Briand, P.-A., Tatu, U., and Picard, D. (2009). The complementation of yeast with human or Plasmodium falciparum Hsp90 confers differential inhibitor sensitivities. Mol. Biochem. Parasitol. 164, 147-152. [doi]

Pandey, D. P., Lappano, R., Albanito, L., Madeo, A., Maggiolini, M., and Picard, D. (2009). Estrogenic GPR30 signaling induces proliferation and migration of breast cancer cells through CTGF. EMBO J. 28, 523-532. [Pubmed]


Picard, D. (2008). A stress protein interface of innate immunity. EMBO Rep. 9, 1193-1195. [Pubmed]

Lev, A., Takeda, K., Zanker, D., Maynard, J. C., Dimberu, P., Waffarn, E., Gibbs, J., Netzer, N., Princiotta, M. F., Neckers, L., Picard, D., Nicchitta, C. V., Chen, W., Reiter, Y., Bennink, J. R., and Yewdell, J. W. (2008). The exception that reinforces the rule: crosspriming by cytosolic peptides that escape degradation. Immunity 28, 787-798. [Pubmed]

Albanito, L., Sisci, D., Aquila, S., Brunelli, E., Vivacqua, A., Madeo, A., Lappano, R., Pandey, D. P., Picard, D., Mauro, L., Andò, S., and Maggiolini, M. (2008). EGF induces GPR30 expression in estrogen receptor-negative breast cancer cells. Endocrinology 149, 3799-3808. [Pubmed]

Forafonov, F., Toogun, O. A., Grad, I., Suslova, E., Freeman, B. C., and Picard, D. (2008). p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol. Cell. Biol. 28, 3446-3456. [Pubmed]

Dudek, P. and Picard, D. (2008). Genomics of signaling crosstalk of estrogen receptor α in breast cancer cells. PLoS One 3, e1859. [PLoS One]


Grad, I., and Picard, D. (2007). The glucocorticoid responses are shaped by molecular chaperones. Mol. Cell. Endocrinol. 275, 2-12. [Pubmed]

Mehenni, H., Resta, N., Guanti, G., Mota-Vieira, L., Lerner, A., Peyman, M., Chong, K. A., Aissa, L., Ince, A., Cosme, A., Costanza, M. C., Rossier, C., Radhakrishna, U., Burt, R. W., and Picard, D. (2007). Molecular and clinical characteristics in 46 families affected with Peutz-Jeghers syndrome. Dig. Dis. Sci. 52, 1924-1933. [Pubmed]


Grad, I., McKee, T. A., Ludwig, S. M., Hoyle, G. W., Ruiz, P., Wurst, W., Floss, T., Miller III, C. A., and Picard, D. (2006). The Hsp90 co-chaperone p23 is essential for perinatal survival. Mol. Cell. Biol. 26, 8976-8983. [Pubmed]

Picard, D., Suslova, E., and Briand, P.-A. (2006). 2-color photobleaching experiments reveal distinct intracellular dynamics of two components of the Hsp90 complex. Exp. Cell Res. 312, 3949-3958. [Pubmed]

Vivacqua, A., Bonofiglio, D., Albanito, L., Madeo, A., Rago, V., Carpino, A., Musti, A. M., Picard, D., Andò, S., and Maggiolini, M. (2006). 17β-estradiol, genistein and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the G protein-coupled receptor GPR30. Mol. Pharmacol. 70, 1414-1423. [Pubmed]

Picard, D. (2006). Chaperoning steroid hormone action. Trends Endocrinol. Metab. 17, 229-235. [Pubmed]

Gburcik, V., and Picard, D. (2006). The cell-specific activity of the estrogen receptor α may be fine-tuned by phosphorylation-induced structural gymnastics. Nuclear Receptor Signaling 4, doi:10.1621/nrs.04005. [Online access]

Phelps, C.*, Gburcik, V.*, Suslova, E.*, Dudek, P.*, Forafonov, F.*, Bot, N., MacLean, M., Fagan, R. J., and Picard, D. (2006). Fungi and animals may share a common ancestor to nuclear receptors. Proc. Natl. Acad. Sci. USA 103, 7077-7081.
(* these authors contributed equally) [Pubmed]

Picard, D. (2006). Intracellular dynamics of the Hsp90 co-chaperone p23 is dictated by Hsp90. Exp. Cell Res. 312, 198-204. [Pubmed]

Vivacqua, A., Bonofiglio, D., Recchia, A. G., Musti, A. M., Picard, D., Andò, S., and Maggiolini, M. (2006). The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17β-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol. Endocrinol. 20, 631-646. [Pubmed]


Gburcik, V., Bot, N., Maggiolini, M., and Picard, D. (2005). SPBP is a phosphoserine-specific repressor of estrogen receptor α. Mol. Cell. Biol. 25, 3421-3430. [Pubmed]

MacLean, M. J., Martínez Llordella, M., Bot, N., and Picard, D. (2005). A yeast-based assay reveals a functional defect of the Q488H polymorphism in human Hsp90α. Biochem. Biophys. Res. Commun. 337, 133-137. [Pubmed]

Mehenni, H., Lin-Marq, N., Buchet-Poyau, K., Reymond, A., Collart, M. A., Picard, D.*, and Antonarakis, S. E.* (2005). LKB1 interacts with and phosphorylates PTEN – a functional link between two proteins involved in cancer predisposing syndromes. Hum. Mol. Genet. 14, 2209-2219. (* these authors contributed equally) [Pubmed]

Leskinen, P., Michelini, E., Picard, D., Karp, M., and Virta, M. (2005). Bioluminescent yeast assays for detecting estrogenic and androgenic activity in different matrices. Chemosphere 61, 259-266. [Pubmed]


Donzé, O., Dudek, P., and Picard, D. (2004). siRNA production by in vitro transcription. In Gene Silencing by RNA Interference: Technology and Application, M. Sohail, ed. (CRC Press LLC), pp. 59-72.

Picard, D. (2004). Hsp90 invades the outside. Nat. Cell Biol. 6, 479-480. [Pubmed]

Dudek, P., and Picard, D. (2004). TROD: T7 RNAi Oligo Designer. Nucleic Acids Res. 32, W121-123. [Pubmed]

Maggiolini, M., Recchia, A. G., Carpino, A., Vivacqua, A., Fasanella, G., Rago, V., Pezzi, V., Briand, P.-A., Picard, D., and Andò, S. (2004). Estrogen receptor β is required for androgen-stimulated proliferation of LNCaP prostate cancer cells. J. Mol. Endocrinol. 32, 777-791. [Pubmed]

Picard, C., and Picard, D. (2004). A web application to manage a database for liquid nitrogen tanks. Immunol. Cell Biol. 82, 257-259. [Pubmed]

Donzé, O., Deng, J., Curran, J., Sladek, R., Picard, D.*, and Sonenberg, N. * (2004). The interferon-induced protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J. 23, 564-571. (* these authors contributed equally) [Pubmed]

Maggiolini, M., Vivacqua, A., Fasanella, G., Recchia, A. G., Sisci, D., Pezzi, V., Montanaro, D., Musti, A. M., Picard, D., and Andò, S. (2004). The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. J. Biol. Chem. 279, 27009-27016. [Pubmed]

Pinto, B., Picard, D., and Reali, D. (2004). A recombinant yeast strain as a short term bioassay to assess estrogen-like activity of xenobiotics. Ann. Ig. 16, 579-585. [Pubmed]


Picard, D. (2003). SCOPE/IUPAC project on environmental implications of endocrine active substances: Molecular mechanisms of cross-talk between growth factors and nuclear receptor signaling. Pure Appl. Chem. 75, 1743-1756.

Riggs, D. L., Roberts, P. J., Chirillo, S. C., Cheung-Flynn, J., Prapapanich, V., Ratajczak, T., Gaber, R., Picard, D., and Smith, D. F. (2003). The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J. 22, 1158-1167. [Pubmed]

MacLean, M., and Picard, D. (2003). Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8, 114-119. [Pubmed]


Maggiolini, M., Bonofiglio, D., Pezzi, V., Carpino, A., Marsico, S., Rago, V., Vivacqua, A., Picard, D., and Andò, S. (2002). Aromatase overexpression enhances the stimulatory effects of adrenal androgens on MCF7 breast cancer cells. Mol. Cell. Endocrinol. 193, 13-18. [Pubmed]

Abbas-Terki, T., Briand, P.-A., Donzé, O., and Picard, D. (2002). The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically. Biol. Chem. 383, 1335-1342. [Pubmed]

Foray, N., Marot, D., Randrianarison, V., Dalla Venezia, N., Picard, D., Perricaudet, M., Favaudon, V., and Jeggo, P. (2002). Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Mol. Cell. Biol. 22, 4020-4032. [Pubmed]

Donzé, O., and Picard, D. (2002). RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res. 30, e46. [Pubmed]

Picard, D. (2002). Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci. 59, 1640-1648. [Pubmed]


Maggiolini, M., Carpino, A., Bonofiglio, D., Pezzi, V., Rago, V., Marsico, S., Picard, D., and Andò, S. (2001). The direct proliferative stimulus of dehydroepiandrosterone on MCF7 breast cancer cells is potentiated by overexpression of aromatase. Mol. Cell. Endocrinol. 184, 163-171. [Pubmed]

Maggiolini, M., Bonofiglio, D., Marsico, S., Panno, M. L., Cenni, B., Picard, D., and Andò, S. (2001). Estrogen receptor α mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol. Pharmacol. 60, 595-602. [Pubmed]

Abbas-Terki, T., Donzé, O., Briand, P.-A., and Picard, D. (2001). Hsp104 interacts with Hsp90 cochaperones in respiring yeast. Mol. Cell. Biol. 21, 7569-7575. [Pubmed]

Donzé, O., Abbas-Terki, T., and Picard, D. (2001). The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J. 20, 3771-3780. [Pubmed]


Picard, D. (2000). Posttranslational regulation of proteins by fusions to steroid-binding domains. Methods Enzymol. 327, 385-401. [Pubmed]

Scheidegger, K. J., Cenni, B., Picard, D., and Delafontaine, P. (2000). Estradiol decreases IGF-1 and IGF-1 receptor expression in rat aortic smooth muscle cells: Mechanisms for its atheroprotective effects. J. Biol. Chem. 275, 38921-38928. [Pubmed]

Abbas-Terki, T., Donzé, O., and Picard, D. (2000). The molecular chaperone Cdc37 is required for Ste11 function and pheromone-induced cell cycle arrest. FEBS Lett. 467, 111-116. [Pubmed]


Maggiolini, M., Donzé, O., Jeannin, E., Andò, S., and Picard, D. (1999). Adrenal androgens stimulate the proliferation of breast cancer cells as direct activators of estrogen receptor α. Cancer Res. 59, 4864-4869. [Pubmed]

Maggiolini, M., Donzé, O., and Picard, D. (1999). A non-radioactive method for inexpensive quantitative RT-PCR. Biol. Chem. 380, 695-697. [Pubmed]

Picard, D., ed. (1999). Nuclear receptors: a practical approach. Vol. 207 (Oxford: Oxford University Press).

Cenni, B., and Picard, D. (1999). Ligand-independent activation of steroid receptors: new roles for old players. Trends Endocrinol. Metab. 10, 41-46. [Pubmed]

Picard, D. (1999). Regulation of heterologous proteins by fusion to a hormone binding domain. In Nuclear receptors: a practical approach. D. Picard, ed., Vol. 207 (Oxford: Oxford University Press), pp. 261-274.

Donzé, O., and Picard, D. (1999). Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the α subunit of eukaryotic translation initiation factor 2. Mol. Cell. Biol. 19, 8422-8432. [Pubmed]

Abbas-Terki, T., and Picard, D. (1999). α-complemented β-galactosidase. An in vivo model substrate for the molecular chaperone heat-shock protein 90 in yeast. Eur. J. Biochem. 266, 517-523. [Pubmed]

Liu, J. W., Jeannin, E., and Picard, D. (1999). The anti-estrogen hydroxytamoxifen is a potent antagonist in a novel yeast system. Biol. Chem. 380, 1341–1345. [Pubmed]

Cenni, B., and Picard, D. (1999). Two compounds commonly used for phospholipase C inhibition activate the nuclear estrogen receptors. Biochem. Biophys. Res. Commun. 261, 340-344. [Pubmed]

Balmelli-Gallacchi, P., Schoumacher, F., Liu, J. W., Eppenberger, U., Müller, H., and Picard, D. (1999). A yeast-based bioassay for the determination of functional and non-functional estrogen receptors. Nucleic Acids Res. 27, 1875-1881. [Pubmed]


Publications ≤ 1998 (pre-digital age) are unfortunately not listed, but can be found in Pubmed.